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Summary

One of the desirabilities of any response surface design Is that It
should lendItselfto blocking. Arrangement ofdesignpoints Intoseveral
blocks help reduction In experimental error and consequently provide
efflclent estimates of the regression parameters p ofa response surface
model. In this paper the problem of orthogonal blocking of mixture
designs and method of estimating the parameters of the model are
discussed.Amethodofblocking symmetric simplex designsand another
methodusing orthogonal arrays ofstrength 2 are presented.
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Introduction

Experiments in which the compositional variables are
proportions of different components and the response due to any
combination depends on the proportions ofthe components present
in the combination but not on their amounts are called experiments
with mixtures. Each combination is a mixture of q components. If
Xij denotes the proportion of the j"" components in the i'
combination, then.

q

0 S Xy S 1, ^ Xy = 1, i =1, 2,
J=i

N

(1.1)

Due to the constraints (1.1) the factor space is a regular (q-1)
dimensional simplex and designs for exploration of such factor
spaces are called simplex designs. Simplex lattice, simplex centroid
designs (Scheffe' [9] [10] ) and symmetric simplex designs (Murty
and Das [4] ) are examples of simplex designs. Let D = (xij) be the
Nxq design matrix forthe study ofresponse surfaces with Nmixture
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combinations. According to Box and Hunter [1] one ofthe require
ments of any response surface design is that it should lend itself to
blocking. When the design points are arranged in blocks and the
response at i mixture combination occurring in the m^^ block is
denoted as yim. a first ordermodel for the response surface wiU be
of the form

q

yim ~ 2 Pj *ij + + Elm
(1.2)

where Pj is the effect of the mixture component in the i*^
combination am is the m^^ block effect and eim is therandom error
associated with yim.

Arrangement ofthe design points in blocks in general facilitates
reduction in experimental error by providing separate estimates of
block effects a' = ( ai , 02 ab), with a consequent increase in
efficiency of the estimates of the regression parameters

= (Pi. P2. • • Pq) and the estimated response. Also, intrablock
comparisons ofthe estimated responses become more efficient than
inter block comparisons. This fact would become important and
valuable when blocking is made on the basis ofsome physical or
experimental conditions. The arrangement ofthe Ndesign points in
b blocks {Bi,B2 Bb) such that g and a can be estimated with
cov(^ . aj=0, is known asorthogonalblocking. Otherwise itiscaUed
non orthogonal blocking.

In this paper the problem of estimating regression parameters
§ and block parameters a such that cov(|. a) = 0 is discussed. A
method ofblocking symmetric simplex designs and a method using
orthogonal arrays of strength 2 are presented.

2. Fitting ofResponse Suiface Models

Ageneral linear model representing the response surface may
be written as

Y = X£+ £ (2.1)

where

Y = (yi. y2. • • Yn)' is a vector of N observations at the N
design points,
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X : (Nxn) matrix of coefficients of the regression
parameters,

^ : (nxl) vector of regression parameters,

e : (Nxl) vector of random errors following N (0, a® 1)

The least squares estimate of^ is given by

i=(X'Xr^X'Y (2.2)

V(i)= (X'X)-^a^and (2.3)

-2^ (Y - Xp)' (Y - Xp)
N- n (2.4)

We assume that the first and second order canonical
polynomials of Scheffe' [9] are appropriate for representing the
response surface. Then a first order model has X =Xi = D, n = q and
is written as

E(y,)=2; pjxy
J-i (2.5)

For a second order model, X=(Xi : X2I, n = ^
additional columns Xjk (j < k )of X2 arising due to the product terms
(xijxik), (i = 1, 2 N). The model then is written as

q q

E(yi)= J pjXij+ 2 PjkXijXjk
J=i J<k=i (2.6)

Suppose the N design points are arranged in b blocks
(Bi,B2,...Bb) in such a way that a point occurs at most once in any

•>

block, the m"* block 3^ containing nm design points, ^ nm = N.
m=l

Define the matrix Z such that
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Zto= 1 ifXijGBm, j = 1.2. (2.7)

= 0 otherwise

The matrix Z of order Nxb (b<N) is then the incidence matrix of
the design. It may be noted that

Xi Jqi = Jni and ZJbi = Jni (2.8)

where J is a vector with all its elements one. Also the rank of Z is b.
Incorporating the block effects a, the model (2.1) can be written as

Y = + Za + 8 (2.9)

where Y. X. Z, a and e are as defined in (1.2), (2.1) and (2.7). The
normal equations for estimating the parameters are given by

X'X X' Z"
A

'X'Y

Z'X Z' z
A

a Z'Y (2.10)

In view of (2.8), the coefficient matrix on the l.h.s. of (2.10) has
rank less than (n + b) and is therefore singular. In order to solve the
normal equations in such a case one method is to impose
restrictions on the parameters. The actual number of the required
restrictions depend upon the rank of the coefficient matrix. For
example, when a first order model is'considered, X = Xi, n = q the
rank of the coefificient matrix is q + b - 1. Therefore, only one
restriction on the parameters is required to obtain their estimates.
We suggest below two sets of restrictions, namely.

(i) Z'X^= 0 (2.11]

or (ii) X' Za = 0 (2.12)

(2.11) involves b restrictions on f whereas (2.12) involves n restric
tions on a. By a suitable arrangement of the design points into
blocks it is possible to reduce (2.11) or (2.12) to tlie required nimiber
ofrestrictions as wUl be seen later. The estimates ofthe parameters
are derived below under each of the above restrictions fe.ll) and
(2.12) separately.
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(a) Z' X^ = o Under this case the normal equations
(2.10) reduce to

x'xi+ X'Za= X'Y (2.13)

Z'Za= Z'Y (2.14)

From (2.14) a=(Z'Z)-'Z'Y (2.15)

Substituting (2.15) in (2.13) and simplying, we get the adjusted

1= (X'X)-'X' (l-M)Y. where M= Z(Z'Z)"'Z' (2.16)

A A

It can be seen that a and ^ are unbiased, and

V(^ = {z'zyW

V(i) = .(X'X)-'X'(l-M)X(X'X)-'a'' (2.17)

A A

Also, Cov(a , ^) = 0, as it should be.

(b) X' Za = 0 : Under this case, as in the above, the unbiased
estimates of and a are given by .

(X'X)-'X'Y (2.18)

, a = (Z' Z)-' Z' (1- P)Y , where P = X(X'X)"' X' (2.19)
f

Further

V(i) = (X'X)-'o='

V(^ = (Z' Z)-^ Z' (I- P) Z(Z' Z)-' (2.20)

and Cov (a , £ )=0

Remark: (2.16) and (2:19) can be considered as the adjusted
estijmates whereas (2.15) and (2.18) as unadjusted
e'stiinates.
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It can be seen that the two sets of restrictions (2.11) an (2.12)
not only provided unbiased estimates of the peirameters but also
estimates £ and a have turned out to be orthogonal since
Cov(a , £)=p. We investigate below the nature ofthe restrictions in
terms of the composition of the matrices X and Z.

(a) Considering Z' X ^ = O, we can write

Z'X =

"CV'
cf p(2)

p(l) p(l)

. C® C<f^ .

c'l"' Ck"'.., (2.21)

where C]""' = ^ . j =1. 2, . .

and . j<k =1.2. m= 1. 2. . . . b.

Then the conditions Z' X p = O reduces to

i cj"' Pj = 0
>1 '

for a first order model.

and

i cr p, +2 csf ^11. - 0
j=i j<k= 1

for a second order model

(2.22)

(2.23)

In particular when a first order model is fitted using symmetric
simplex design, the b restrictions of(2.22)can be reduced to a single
restriction, arranging the design points of the symmetric simplex
design into blocks such that

I xy= Cr= ar j=1.2 q.
(2.24)
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*1

In this case the only restriction is Pj = 0- Whereas when a
j-i

second order model is flitted using sjonmetric simplex design,
arranging the design points into blocks such that

a'r' ^ af' and a^"' a^"''

for some m m'

where a^"' = J Xy Xa, = j <k =1, 2 q.

lead to atleast two distinct restrictions.

These are termed as "blockingconditions" by Nigam [5]. Thus, itcan
be seen that the conditions Z'X^,= 0 provide a general set of
restrictions, which lead toorthogonal estimates of^ andg ofwhich
(2.24) and (2.25), also obtained by Nigam [5] are particular cases
applicable only in case ofsymmetric simplex designs.

(b) Now consider X' Za = 0. Using a sjTnmetric simplex design in
blocks satisfying (2.25) we have from (2.21) a set of

restrictions in which the first q restrictions which are identical
are ^ven by

2 ^ = 0
m=l

(2.25)

(2.26)

and the next restrictions which are also identical are given by

2 4-' 0
m=l (2.27)

Thus X' Za = 0 lead to two sets ofrestrictions (2.26) and(2.27)
on
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a. (2.26) is equivalent to ^ nm am = 0 and (2.27) is equivalent to
m=l

b q

^ nm (1- dm) am = 0 where dm = 2) . ie Bm. For a first order
m=l J=l^
model (2.26) is the only restriction on a where as for a second order
model both (2.26) and (2.27) should hold but not (2.26) alone as
suggested by Singh, Pratap and Dass [11]. Here again X' Z a = 0
provide the general set of restrictions, for aUtypes of design includ
ing symmetric simplex designs.

2.1 Variance ofestimated response ;

From (2.17) and (2.20) we have

D(i) = (X' X)-' X' (I- M) X(X' X)-^

D(^ = (z' zy' z' (I- p) z (z' zy' o''

The estimated response at the i^ combination in the m^ block,
assuming fibrst order model is given by

yim = 2 Pj
J=1

(2.28)

th ] 5/thA simple contrast between the estimated responses at 1 and i
combinations of the same m block is given by

(yim - y'lm) = 2! Pj (~
j=i

and its variance is

v(yto - yi'm) = J (xij - v(Pj)
j-i

(2.29)

+2 ^ (Xij - Xi'j) (Xjk - Xi'k) cov(Pj . Pk)
j<k (2.30)
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In particular, for a symmetric simplex design arranged in blocks
satisfying (2.25), it can be found, for the adjusted £'s, that

<^andCov(Pj.

N N

where a= ^ Xy ,j =l,2 qand b=^ Xy Xjt',
1=1 1=1

j < k = 1, 2 q.

then V (yim - yi^m)

-^ i <-.r -.3)' -^i(^b) ,2.31)
3. Analysts

When the design points are arranged in b blocks the analysis of
varia.nce of the data in the presence of block effects is given below.

The regression sum of squares with (n+b-1) degrees of freedom
is given by either

(i)i' Q+ Y'MY
(ii)Y'PY+ a'R (3.1)

where Q = X' (1- M) Y , R = Z' (I- P) Y.

Q represents the sum ofsquares (s.s) due to £'s (adjusted)
q2

with (n-1) degrees of freedom and (Y' MY - —) gives the s.s due to

blocks unadjusted with (b-1) degrees of freedom. Similarly a' R
represents the s.s due to blocks (adjusted) with (b-1) degrees of

Afreedom and ( Y' PY - —) give the s.s due to |'s unadjusted with
q2

(n-1) degrees of freedom, — is the correction factor. The ANOVA

table showing the proper s.s for testing Ho : ^ = O against
H; : ^ 0 and for testing Hi :a =Oagainst Hi; a 0 is givenbelow.
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ANO VATable

Under Z'X| =0 UnderX'Za- 0

Source d.f s.s mss F s.s F

Due to

fi
r-1

&'9
(adjusted) 4

s|
si

p2
V'PY--

(unadjust .
ed)

Due to
A

a

b-1

v-mv4
(unadjust

ed)

k R
(adjusted)

4
si

Error N-n-b+1 By
subtraction

si By subtraction

Total
N-1

^2

4. Symmetric Simplex Designs in Blocks

Murty and Das [4] introduced symmetric simplex designs for
mixture experiments. The i*** design point (xn, Xi2 Xiq) in which
d ofthe Xij (j =1,2 q) are non zero quantities is called d"* order
ml5cture and is denoted by Sd,. Further, let di of the Xy ofSd be each
equal to qi dh of the of Sd be each equal to qh, so that

h h

^ dk = d and ^ qk dk = 1. All the d'** order mixtures obtainable
k=l k=l

by permutation of different proportions in the mixture over the q
components is called a group and is denoted by Gd- A symmetric
simplex design for experiments with mixtures consists of some or
all the groups Gd (d = 1, 2 q).

Since every group Gd of the symmetric simplex design satisfies
(2.25), we have the following theorem.

Theorem 4.1 : Every group Gdof order (d = 1,2 q) ofa sjmimetric
simplex design constitutes a block of the mixture design.
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5. Blocking Mixture Designs Using Orthogonal Arrays

A (N, r, s) array is an r x N matrix with entries from a set of s
elements.

For a given selection of d rows, v/e denote by n (ii, i2 id) the
number of times the column vector (ii, 12 id) occurs in the dxN
submatrix specified by the selected rows.

Definition 5.1 : A (N,r,s) array is said to be an orthogonal array of
strength d if

n(ii, i2 id) = K constant.

for all possible combinations ij, is id e s and for any selection
of d rows. Such an array is denoted by (N. r. s. d). The constant Xis
called the index of the orthogonal array.

Definition 5.2 : A(N, r, s) array is said to balanced array of strength
d if n(ii, i2 id) is constant for all permutations of ij, ig i^
and for any selection of d rows.

Definition 5.3 : A(N, r, s) array is said to be a semibalanced array of
strength d if for any selection of d rows.

(i) n(ii, 12 id) = O if any two ijare equal and

(ii) ^ n(ii, ia id) = >^
p

where p represents summation over all permutations of distinct
elements ij, ig id-

Lemma 5.1 : When q is a prime or a prime power, an orthogonal
array [q^. q+1, q. 2] can be constructed using the elements ofGF(q).
(Raghavarao [6]).

Lemma 5.2 : Let q be an odd prime or an odd prime power.

Then q, q, 2) semi balanced array exists.

Lemma 5.3 : For odd prime number q, the (q-1) mutually orthogonal

latin squares can be partitioned into sets of latin squares each

such that the pairs of the q elements occurs exactly once in
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any two colummed sub-matrix ofan array formed by^^^ rows of
2d

array of the two sets. (Murty [3]).

Suppose we have q distinct proportions pi, P2 Pq which are
q

such that Pj a 0 and ^ pj = 1 (q is a prime number or a prime
J=i

power). A mixture combination of the q components can be formed
bythe q distinct proportions. The proportion Xj ofthe j"* component
can assume any of the pi. P2 Pq values. For example (pi, p2, .
. Pq) is one mixture combination and (p2, pi Pq) is another
mixture combination and so on. Thus we have q! distinct mixture
combinations which constitute the mixture design D. Since q is
prime or prime power there exists a GF(q) with elements
oo, ai, . . , ttq-i. Accordingto Lemma 5.1 an orthogonal array OA[q^,
q+1, q, 2] also exists with elements belonging of GF(q). Then by a
one to one correspondence of the elements of GF(q)wlth pi, P2
Pq in the orthogonal array OA(q^, q+1,q, 2)and bydeletingthe entire
first row and the first q columns we obtain a balanced array [q(q-l),
q, q, 2]. Each column ofthis array represents a mixture combination
in q components and the entire array of q{q-l) columns can be
regarded as a block consisting of q(q-l) mixture combinations.
Further it is possible to have (q-2)! distinct such balanced arrays by
permuting any (q-2) rows of the array. Therefore we have (q-2)!
distinct blocks each of size q(q-l) for the inixture design D.

Hence the following theorem.

Theorem 5.1 : If the number of components constituting a mixture
is q, q being a prime number or a prime power, and a mixture
combination in the q components can be a constituted by distinct
proportions pj, P2 Pq which are such that Pj a 0 smd

q

2 Pj = 1 then the mixture design of q! combinations can be
j=i

arranged in (q-2)! blocks each of size q(q-l) using orthogonal array
[q^q+l,q, 2].

By lemma 5.3 we have the following corrolary.

CoiTolanj 1: When q is odd and aU the proportions pi, P2 Pq
are distinct, the mixture design D can be arranged in 2(q-2)! blocks

each of size .
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Example 5.1. Let q=4 and all the proportions pi, p2. P3. P4 are
distinct f>| a O and pi + p2 + P3 + P4 =1 : Then tiie mixture design
cdnsists of 24 combination given by

D =

Pi P2 P3 P4 P2 P3 Pi P4

Pi P2 P4 P3 P2 Pi P4 P3

Pi P3 P4 P2 P2 Pi P3 P4

Pi P3 P2 P4 P2 P4 Pi P3

Pi P4 . P2 P3 P2 P4 P3 Pi

Pi P4 P3 P2 P3 Pi P2 P4

P2 P3 P4 Pi P3 Pi P4 P2

P3 P2 P4 Pi P4 Pi P3 P2

P3 P2 Pi P4 P4 P2 P3 Pi

P3 P4 Pi P2 P4 P2 Pi P3

P3 P4 P2 Pi P4 P3 Pi P2

P4 Pi P2 P3 P4 P3 P2 'Pi

Consider the elements of GF(2 ) namely O, 1, a , a^, the two
orthogonal arrays (16, 5, 4, 2) are given by

0 Ai :

OAs:

0 0 0 0 1 1 1 1 a a a a

0 1 a a" 0 1 a 0 1 a 0 1 a

0 1 a 1 0 a a 0 1 a® a 1 0

0 1 a a 0 1 a 1 0 1 0 a

0 1 a a" a 1 0 1 0 a a 0 1

0 0 0 0 1 1 1 1 a2 a a a a

0 1 a' a 0 1 a 0 1 a 0 1 a

0 1 a'' a 1 0 a a" a 0 1 a 1 0

0 1 a' a «=> a 0 1 a 1 0 1 0 a

0 1 a a a 1 0 1 0 a 0 1
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The arrays obtained by deleting the first row and the first four
columns of OAi and OA2 and writing pi, p2, pa, p4 for O, 1, a,
respectively, the two blocks each consisting of 12 combinations of
a four component mixture design are given below. Each column is
a mixture combination.

Block 1

Pi P2 P3 P4 Pi P2 P3 P4 Pi P2 P3 P4

P2 Pi P4 P3 P3 P4 Pi P2 P4 P3 P2 Pi

P3 P4 Pi P2 P4 P3 P2 Pi P2 Pi P4 P3

P4 P3 P2 Pi P2 Pi P4 P3 P3 P4 Pi P2

Block 2

Pi P2 P4 P3 Pi P2 P4 P3 Pi P2 P4 P3

P2 Pi P3 P4 P4 P3 Pi P2 P3 P4 P2 Pi

P4 P3 Pi P2 P3 P4 P2 Pi P2 pi P3. P4

P3 P4 P2 Pi P2 • Pi Pa P4 P4 P3 Pi P2

The mixture design D of this example is a symmetric simplex
design which is arranged in two blocks. By including one additional

combination say centroid (-|̂ , -^) in one of the blocks (say
block 2) it can be easily seen that the blocking conditions (2.25) are
satisfied. Further, the block sizes are

ni = 12 and n2 =13

Let Y' = (yi. y2 y25)' be the vector of observations taken at the
25 design points and a first order model (2.28) is fitted. Then the
least squares estimates of the parameters ^ and a under the

4

restriction ^ Pj = 0' using (2.16) are given by

£= (X'Xr' X'(I-m)Y

where X : 25 x 4 design matrix of mixture combinations

(X' X)"' : (c. d). 4X4matrix with c=25^a-^b)
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M

-4bas diagonal element, d=25 (a - b)
diagonal element in which

^= b=42;PiPj+^

0 Ei3j

Z(Z' Z)-' Z'

16
i

25x2 block matrix given by
Ei2,1 0

i<j=i

E 12.12
0

12

0
Ei3,13

13

16

in which E is a matrix with all its elements

a = (Z' Z)-' Z' Y
j^2)

where j?""' is the mean of the observations in the
m"* block, (m = 1. 2)

The variance-covariance matrix of adjusted ^'s is

1
D(©

4(a- b)
[41- E]a'

Variance ofsimple contrast between estimated responses at any two
(say 1st and 2nd) points of the same block (say block is given by

V (yii - y2i) =
2a^
a- b

[(Pl - P2f + (P3 - P4f ]

Similar results under the restriction ^ n^ am can also be derived.
m=l

Analysis of variance table for testing hypothesis Hq : ^ = O against
^ 0 is given below
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ANOVA Table

df S.S m.s.s F

Due to P's
(adjusted) 3 f 9 4 £l

S?
Fa, 20

Due to a's

(unadjusted) 1

Error
20

By subtraction

s?

Total
24

^2

25

where Q=X' (I - M)Y. G=.J yj
1=1

Remark : By including atleast one additional design point like
centroid to one of the blocks the blocking conditions (2.25) are
satisfied. More number of centroids also could be included to

increase the efficiency to a desired level, if cost constraints are not
involved.
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