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Summary

One of the desirabilitles of any response surface design is that it
should lend itself to blocking. Arrangement of design points into several
blocks help reduction in experimental error and consequently provide
efficient estimates of the regression parameters p of a response surface
model. In this paper the problem of orthogonal blocking of mixture
designs and method of estimating the parameters of the model are
discussed. A method of blocking symmetric simplex designs and another
method using orthogonal arrays of strength 2 are presented. .

Key words : Experiments with mixtures, orthogonal blocking,
orthogonal arrays, symmetric simplex designs. :

Introduction

Experiments in which the compositional variables are
proportions of different components and the response due to any
combination depends on the proportions of the components present
in the combination but not on their amounts are called experiments
with mixtures. Each combination is a mixture of q components. If
xy denotes the proportion of the i components in the i®
combination, then,

q
Osxljs_l,E =1, i=1,2,...N
=) (1.1)

Due to the constraints (1.1) the factor space is a regular (q-1)
dimensional simplex and designs for exploration of such factor
spaces are called simplex designs. Simplex lattice, simplex centroid
designs (Scheffe’ [9] [10] ) and symmetric simplex designs (Murty
and Das [4] ) are examples of simplex designs. Let D = (xy) be the
-Nxq design matrix for the study of response surfaces with N mixture
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combinations. According to Box and Hunter [1] one of the require-
ments of any response surface design is that it should lend itself to
blocking. When the design points are arranged in blocks and the
response at i mixture combination occurring in the m™ block is
denoted as yim, a first order model for the response surface will be
of the form

q

Yim = 2 By Xy + om + &4y
j=1 (1.2)

where £ is the effect of the jth mixture component in the it?
combination oy is the m™ block effect and &im is the random error
associated with yim.

: Arrangement of the design points in blocks in general facilitates
reduction in experimental error by providing separate estimates of

blockeffects o' = (o, 09, ..., ap), with a consequent increase in
efficiency of the estimates of the regression parameters
B'= (B1. B2 - . ., By) and the estimated response. Also, intrablock

comparisons of the estimated responses become more efficient than
inter block comparisons. This fact would become important and
valuable when blocking is made on the basis of some physical or
experimental conditions. The arrangement of the N design points in
b blocks (By,Bg, . . ., By) such that § and a can be estimated with
cov(f, a)=0,is known as orthogonal blocking. Otherwise it is called
non orthogonal blocking.

In this paper the problem of estimating rggressio'n parameters
B and block parameters o such that cov(f, a) =0 is discussed. A
method of blocking symmetric simplex designs and a method using
orthogonal arrays of strength 2 are presented. -

2. Fitting of Response Surface Models

A general linear model representing the response surface may
be written as

Y= XB+ ¢ (2.1)
where

Y = (¥1, ¥2. . . .. yn) is a vector of N observations at the N
design points,



BLOCK DESIGNS FOR MIXTURE EXPERIMENTS 57

X : (Nxn) matrix of coefficients of the regression
parameters,

B : (nxl) vector of regressjon parameters,
& : (Nxl) vector of random errors following N (0, o’ D

The least squares estimate of § is given by

b= xx! XY 2.2)
V@)= (X'X)" o?, and ' _ (2.3)

2 (- XB v - xf)

A
[0

N-n (2.4) -

We assume that the first and second order canonical
polynomials of Scheffe’ [9] are appropriate for representing the
response surface. Then a first order model has X =X; =D, n = q and
is written as :

q
EG)= Y Bx
=g b (@.5)

" Fora secoryld.order_ model, X = [X; : Xp], n = _q(g;_l)’ the g

additional columns Xy (j < k ) of X5 arising due to the product terms
(xyx), (=1, 2, ..., N). The model then is written as

q q
E(YD = Bj Xy + Bjk le Xik
j=21 j<§l (26]

Suppose the N design points are arranged in b blocks
(B1,B3,...By) in such a way that a pomt occurs at most once in any

block, the m® block Bn containing ny, desxgn points, E nm= N.

-m=]

Define the matrix Z such that
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Zm =1 fXy€Bm, j=1.2,...q @

= 0 otherwise

The matrix Z of order Nxb (b<N) is then the_ixicidence matrix of
the design. It may be noted that

X1 dq1 =Jdn andZJbl Jm . (2.8)

where J is a vector with all its elements one. Also the rank of Z is b.
Incorporating the block effects ., the model (2.1) can be written as

Y= XB+ Za+ e (2.9)

where Y, X, 8, Z; o and ¢ are as defined in (1.2), (2.1) and (2.7). The
normal equations for estimating the parameters are given by

XX XZzZI[B] - [X

zX 72z|]a z’Y (2.10)

In view of (2.8), the coefficient matrix on the Lh.s. of (2.10) has
rank less than (n + b) and is therefore singular. In order to solve the
normal equations in such a case one method is to impose
restrictions on the parameters. The actual number of the required
restrictions depend upon the rank of the coefficient matrix. For
example, when a first order model is considered, X = Xj, n = q the
rank of the coefficient matrix is q + b — 1. Therefore, only one
restriction on the parameters is required to obtain their estimates.
We suggest below two sets of restrictions, namely,

(1) Z’XB=0 (2.11)

A

or - (i) X'Za=0 (2.12)

(2.11) involves b restrictlons on ﬁ whereas (2.12) involves n restric-
tions on a By a suitable arrangement of the design points into
blocks itis poss1b1e to reduce (2.11) or (2.12) to tlie required number
of restrictions as will be seen later. The estimates of the parameters
are derived below under each of the above restrictions (2.11) and
(2.12]) separately. '
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A

(a) ZXB=o Under this case the normal equations
- {2.10) reduce to

XXB+ XZa=XY (2.13)

ZZa=7Y ‘ (2.14)

From (2.14) o= (Z'2)'2'Y : : -+ (2.15)
Substituting (2.15) in (2.13) and simplying, we get the adjusted

= UX?X (1-M)Y, where M= Z(Z'2)'Z' ' (2.16)

It can be seen that _(’_;,_ and ﬁ are unbiased, and
V(@)
V()

Z'z2)'o?

]

X' X)X (1-M) XX X)? o? ‘ (2.17)

Also, Cov(& ﬁ) = 0, as it should be.

(b) X’ Z& = 0 Under this case, as in the above, the unblased
estimates of § and o are given by

b= xx'xY o ' (2.18)
o= (Z 2)'Z (1-P)Y, where P= XX' X)' X  (2.19)
Further

v = @x)'e®
V(@) = (Z' 2y Z' (I- P) Z(Z' 2)" & o (2.20)
and Cov(é. fi_)=

Remark: (2.16) and (2:19) ean be cc;nsidered as the adjusted
.estlinates whereas (2.15) and (2.18) as unadjusted
estimates.
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It can be seen that the two sets of restrictions (2.11) an (2.12)
not only provided unbiased estimates of the parameters but also
estimates ﬁ and a have turned out to be orthogonal since
Cov(a ﬁ)-O We investigate below the nature of the restrictions i in
terms of the composition of the matrices X and Z.

(a) Considering Z' X [5_ = O, we can write

cP,cy,..cPcy ...c¥

. q-1.q
cP,c.,..cPcl ...c2,,
ZX= .
cP, cP,.. cf cf CP1.q (2.21)
where C{V= Y xy , i=1,2,....q.
1eB,,
(m) _ 3 = /-
and Cf°= Y xyxp., j<k=1,2,...q m=1,2,...b.
1B,

Then the conditions Z' X ﬁ = O reduces to

q
> o By =0
A (2.22)

for a first order model,

and
q

q
B+ Y CR b= 0
21 j<k2= 1 (2.23)

for a second order model

In particular when a first order model is fitted using symmetric
simplex design, the b restrictions of (2.22) can be reduced to a single
restriction, arranging the design points of the symmetric simplex
design into blocks such that

2 xy= C™ = af j=12,...q
1B, : (2.24)
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q
In this case the only restriction is E B; = 0. Whereas when a
=1
second order model is fitted using symmetric simplex design,
. arranging the design points into blocks such that

al® = af™ and af® =+ af™ (2.25)

for some m = m'’

where af® = 2 Xy Xy = Cjp i<k=12,...,q
1B,

lead to atleast two distinct restrictions.

These are termed as “blocking conditions” by Nigam [5]. Thus, it can

be seen that the conditions Z'Xf.= 0 provide a general set of

restrictions, which lead to orthogonal estimates of B and a of which

(2.24) and (2.25), also obtained by Nigam [5] are particular cases

applicable only in case of symmetric simplex designs.

(b) Now consider X' Z é = 0. Using a symmetric simplex design in
blocks satisfyin 9@+ 1)

ati g (2.25) we have from (2.21) a set of 5

restrictions in which the first q restrictions which are identical
are given by '

m=1 ) (2.26)

and the next ( g) restrictions which are also identical are given by

b
2 a(2m) &m =0
m=1 : (2.27)

Thus X' Z,& = 0 lead to two sets of restrictions (2.26) and (2.27) on
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b :
_3_1. (2.26) is equivalent to 2 Nm &m = 0 and (2.27) is equivalent to
m=1
b : o 4aq
2 nm (1- dm) Gm= O where dm = 2 xﬁ , ie Bm. For a first order
m=1 J=1

model {2.26) is the only restriction on o where as for a second order
model both (2.26) and (2.27) should hold but not (2.26) alone as
suggested by Singh, Pratap and Dass [11]. Here again X' Za = 0
provide the general set of restrictions, for all types of design includ-
ing symmetric simplex designs.

2.1 Variance of estimated response :
From (2.17) and (2.20) vs;e have
D@ = & X)X (- M) X (X' X)* o2
‘ D@) = (Z 2)' Z' (1-P) Z(Z' Z)* o

The estimated response at the it combination in the m™ block,
assuming first order model is given by

. q
Yim = E By xy+ o
=1 (2.28)

A simple contrast between the estimated responses at i and i"*
combinations of the same m block is given by

T
()A’""g\" ) = éj(x"xl’_]) .
meom ,21 K (2.29)

and its variance is
s} A a A
V(im = Yim) = 2 (xij - xl'j)2 V(Bj)
. Pt

+2 S (- Xy (- xa) covify. B
;,(A ’ (2.30)
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In -particular, for a symmetric 31mp1ex design arranged in blocks
satisfying (2.25), it can be found, for the adjusted ﬁs, that

V(e = =k o and covl,, b = i

N : N
where a = 2 'xﬁ .j=1,2,....qandbv=2 Xy Xik'
. t=1 i=1

j<k=1,2,...q

then V (}A’:m - §’1’m)

2

-l -
qab 2("11 %) -2 e b>J;1(x" w3 @.31)

3. Analysts

When the design points are arranged in b blocks the analysis of
variance of the data in the presence of block effects is given below.

The regression sum of squares ‘with (n+b-1) degrees of freedom
is given by either

Wp 9+ Y MY . .
(i)Y PY+ o' R I ¢ B )

where@= X'(I-M)Y, R=Z'(I-P)Y.

) B''Q represents the sum of squares (s.s) dﬁevto B’s (adjusted)
2

with (n-1) degrees of freedom and ( Y’ MY - %) gives the s.s due to

blocks unadjusted with (b-1) degrees of freedom. Similarly é’ R .
represents the s.s due to blocks (adjusted) with (b-1) degrees of
2

freedom and (Y’ PY - %) give the s.s due to ﬁ’s unadjusted with

2
(n-1) degrees of freedom, % is the correction factor. The ANOVA

table showing the proper s.s for testing H,: B = O against
Ho: B = Oand fortestingH;:o=0againstHj: a = 0 is given below.
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ANOVATable

UnderZ'Xf=0 UnderX'Zga= 0
Source | d.f S.8 mss F s.8 mss F
Due to ) v P‘Y ‘G2
B r-1 5’9 st S N
(adjusted) s2 (unadjust .
ed)
Due'to a2
|y [YMW & R 2 | =
(unadjust v ‘ (adjusted) o s2
ed)
Error | N-n-b+] subt?gctl on s2 By subtraction
Total 2
N-1 YY- %

4. Symmetric Simplex Designs in Blocks

Murty and Das [4] introduced symmetric simplex designs for
mixture experiments. The i design peint (X1, X2, . . . xiq) in which
dofthex; (j=1,2,..., q)are non zero quantities is called d™ order
mixture and is denoted by Sq,. Further, let d; of the xy of S4 be each
equal to q;, . . ., dp of the xy of Sy be each equal to gn, so that
h h

2 dx= d and 2 g dx = 1. All the d™ order mixtures obtainable
=1 k=1

by permutation of different proportions in the mixture over the q
components is called a group and is denoted by Gq4. A symmetric
simplex design for experiments with mixtures consists of some or
all the groups G¢(d=1,2, ..., q).

- Since every group Gq of the symmetric simplex design satisfies
' (2.25), we have the following theorem.

Theorem 4.1 : Every group Ggoforder (d=1, 2, . . ., q) of a symmetric
simplex design constitutes a block of the mixture design.
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5. Blocking Mixture Designs Using Orthogonal Arrays

A (N, T, s)“array is an r x N matrix with entries from a set of s
elements.

For a givén selection of d rows, we dehote by n (i, ig, - . ., ig) the
number of times the column vector (ij, i, . . ., i) occurs in the dxN
submatrix specified by the selected rows. ;

Definition 5.1 : A (N,r,s) array is said to be an orthogonal array of
strength d if
n(is, g, - - -, i) = A, constant.

for all possible combinations i, iy, . . ., iy ¢ s and for any selection
of d rows. Such an array is denoted by (N, r, s, d). The constant A is
called the index of the orthogonal array.

Definition 5.2 : A(N, 1, s) array is said to balanced array of strength
d if n(i, iy, . . ., ig) is constant for all permutations of i}, iy, . . ., iy
and for any selection of d rows.

Definition 5.3 : A(N, r, s) array is said to be a semibalanced array of
strength d if for any selection of d rows.

(D n(iy, iz, . . ., ig) = O if any two j; are equal and

(ii) 2 n(y, ig, . . . ig) = A
P

where p represents summation over all permutations of distinct
elements i, 12, R

Lemma 5.1 : When q is a prime or a prime power, an orthogonal
array [q% q+1, q, 2] can be constructed using the elements of GF(q)
(Raghavarao [6]).

“Lemma 5.2 : Let q be an odd prime or an odd prime power.
Then (g—(—qz——l), q. 9. 2) semi balanced array exists.

Lemma 5.3 : For odd prime number q, the (q—1) mutually orthogonal

latin squares can be partitioned into sets of g;_l latin squares each

such that the q(c12—1) pairs of the q elements occurs exactly once in
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(9-1)

any two colummed sub-matrix of an array formed byg%— rows of
array of the two sets. (Murty [3]). ' .
Suppose we have q distinct proportions p;, ps. . . - Pq Which are
q :

. such that pj= 0 and 2 pj= 1 (q is a prime number or a prime
=1

power). A mixture combination of the q components can be formed
by the q distinct proportions. The proportion xj of the ™ component
can assume any of the p;, pa, . . ., pq values. For example (p1, p2. .
. «» Pq) Is one mixture combination and (p2, p1, . . ., py) is another
mixture combination and so on. Thus we have q! distinct mixture
combinations which constitute the mixture design D. Since q is
prime or prime power there exists a GF(q) with elements
ag, i, . . , Ag-1. According to Lemma 5.1 an orthogonal array OA[q®,
q+1, q, 2] also exists with elements belonging of GF(q). Then by a
one to one correspondence of the elements of GF(q)with py, po. . . .,
Pq in the orthogonal array OA(q% g+1, q, 2)and by deleting the entire
first row and the first q columns we obtain a balanced array [q(g-1),
q. 9. 2]. Each column of this array represents a mixture combination
in g components and the entire array of q{q—1) columns can be
regarded as a block consisting of q(q-1) mixture combinations.
Further it is possible to have (q-2)! distinct such balanced arrays by
permuting any (q-2) rows of the array. Therefore we have (q-2)!
distinct blocks each of size q(gq-1) for the mixture design D.

Hence the following theorem.

Theorem 5.1 : If the number of components constituting a mixture
is q, q being a prime number or a prime power, and a mixture
combination in the q components can be a constituted by distinct
proportions p;, Pa. . . - P, Which are such that pj= O and
q

2 p;= 1 then the mixture design of q! combinations can be
j::

arranged in (g—2)! blocks each of size q(g-1) using orthogonal array
(4. q+1, q, 2].

By lemma 5.3 we have the following corrolary.

Corrolary 1: When q is odd and all the proportions p1. p2. . . Pq
are distinct, the mixture design D can be arranged in 2(q—2)! blocks

each of size ﬂ%—i) .
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/

Example 5.1. Let gq=4 and all the proportions pi, p2, p3, p4 are
distinct pj2Oand p; + p2 +p3 +pa=1: Then the mixture design
consists of 24 combination given by

b1 p2 P3 P4

P2
P P2 P4 ps P2 p1 7 p3
Pt PP P P P2 PL P D4
P1 P3 P2 Ps P2 P4 P1 P3
R Pa P2 b3 P2 P4 p3 P1
D= -p1 Ps o] P2 ps P p2 P41
P2 Ps Ps P1 Ps p1 P4 o)
P3 P2 Ps P1 _ Pa P1 P3 i P2
Ps P2 P1 P4 P+ pe p3 p1

PP P P P P« P2 P Ps
P3 P4 P2 Pi P4 P3 P1 P2
P4 P1 P2 Ps o ps P2 ‘m

Consider the elements of GF(22) namely O 1, a, o? the two
orthogonal arrays (16, 5, 4, 2) are given by

0A;:
0O 0 0 0 1 1 1 1 a a a o o2 o o2 o2
0 1 a 2|0 1 « 2 01 a « 0 1 a o
0 1 a o211 0 o a a o> 0 1 o2 a 1 o
0 1 a o?!|a o2 O 1 o2 ¢« 1 0 1 0 o a
0 1 a o?|la® a 1 0 1 0 a2 a « o 0 1
0As:
o 0 0 0 1 1 1 1 o2 o2 a2 o2 « a a «
0 1 o> a0 1 ¢ a 0 1 2 a 0 1 ¢ o
0 1 2 af{l 0 «a a2 a2 «a 0 1 a o2 1 ©
0 1 o2 ala?2 a O 1 a «2'1 0 1 0 a o2
0 1 o2 ala a of 1 0 1 0 a o o2 0 1
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The arrays obtained by deleﬁng the first row and the first four

columns of OA; and OA; and writing p;, p2, ps. ps for O, 1, a, a®
respectively, the two blocks each consisting of 12 combinations of
a four component mixture design are glven below. Each .column is
a mixture combination.

Block 1 :
P1 P2 p3 Pa P1 P2 P3 Pa P1 P2 © P3 P4
P2 b1 P4 P3 p3 P4 P1 P2 P4 P3 . P2 P1
ps P PL P2 Ps D3 P2 P P2 P1 P4 P3
P4 p3 P2 P1 P2 P1 P4 b3 p3 P4 P1 P2

Block 2 :
P1 p2 P4 P3 P1 P2 P4 p3 p1 P2 - Pa P3
P2 P1 P3 Pa P4 P3 p1 P2 p3 Ps P2 p1
pa+ pPs P P2 Ps Pa P2 PL P2 P1 P3 P4
P3 P4 P2 P P2 - P P3 Pa P4 Ps P1 P2

The mixture design D of this example is a symmetri_é simplex
design which is arranged in twq blocks. By including one additional
11
4’ 4 4 4
block 2) it can be easily seen that the blocking conditions (2.25) are

satisfied. Further, the block sizes are

combination say centroid ( ) in one of the blocks (say

n; =12 and n; =13

LetY' = (y}, Yo, - - -» Yos5) be the vector of observations taken at the

25 design points and a first order model (2.28) is fitted. Then the

least squares estimates of the parameters § and a under the
. .

restriction E ﬁj = 0, using (2.16) are given by
j=1

B= XX X' (I-m)Y
where X : 25 x 4 design matrix of mixture combinations

4 (a+ 2b)

' -1, -
X' Xy : (c.d).4x4matr-ixwithc—25(a_ b)
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-4b
as diagonal element. d= 25 (@~ b) as off

diagonal element in which

4 .
- 2, 1 _ . 1
a=6 X pi+ 15. b=43 PRt g
1 <=1
z: 25x2 block matrix given by
Epap O ‘
0 Eis,1
Ej2,12
| 2 0
M: ZZ2)'7-=
; Ei3,13
0 13

in which E is a matrix with all its elements

¥
a=(Zz'zY=|....
o
where ¥ is the mean of the observations in the

m® block, (m = 1, 2)
The variance-covariance matrix of adjusted ﬁ’s is

D= gz 41~ Elo

Variance of simple contrast between estimated responses at any two
(say 1st and 2nd) points of the same block (say block is given by

A A 202 ’ 2 9
V(11 - ya1) = PERN [((Pr - p2)’ + (P3- pa) |

2
Similar results under the restriction 2 n,; o, can also be derived.
’ m=1
Analysis of variance table for testing hypothesis H, : § = O against
Hi : 8= Ois given below
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ANOVA Table
df S.S i m.s.s R
bue to ﬁ's . 52 '
(adjusted) 3 [ ge) s% _g F3. 20
Se
Due to &'s 2 :
{unadjusted) 1 Y MY - .élg
Error By subtraction
. 20 2
Se
Total G?
24 : ry - 2L
YY 55

25

where Q=X'(I-MY, G=) y,

i=1
/

Remark : By including atleast one additional design point like
centroid to one of the blocks the blocking conditions (2.25) are
satisfied. More number of centroids also could be included to
increase the efficiency to a desired level, if cost constraints are not
involved.
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